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The correspondence between fermionic evolution and stochastic cocycles over 
Z2-graded yon Neumann *-algebras is proved to be parallel to the one in the 
boson case. To show this, the technique of unification of bosonic and fermionic 
quantum stochastic calculus is applied. 

I N T R O D U C T I O N  

It turns out that it is quite natural to characterize quantum stochastic 
evolution in terms of stochastic cocycles (Hudson and Lindsay, 1987; Journfi, 
1987; Accardi et al., 1987; Fagnola, 1991). This has proved to be a very 
powerful tool, extending to the case when the coefficients of the corresponding 
evolution equation are unbounded (Accardi and Mohari, 1994). All the results 
mentioned have to do with bosonic stochastic evolution. 

We aim here to give an outline of how this machinery can be generalized 
to the case of a Z2-graded system algebra when the evolution is driven by 
an equation with bounded coefficients and by fermionic noise. The main 
result establishes that the classes of  stochastic evolutions with bounded coeffi- 
cients and of cocycles with uniformly continuous reduced semigroup are 
coextensive. To prove this, we use the technique of unification of fermionic 
and bosonic quantum stochastic calculus (Hudson and Parthasarathy, 1986). 
Notice that this result is by no means an immediate corollary of  the bos- 
onic one. 

In Section 1 we recall the useful definitions and properties of  the objects 
with which we are concerned and introduce our notations. In Section 2 we 
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introduce the basic martingales of fermionic quantum stochastic calculus via 
bosonic ones, define the fermionic cocycle, and prove our main result. The 
converse statement is formulated in the last section. 

1. PRELIMINARIES AND BASICS OF QUANTUM 
STOCHASTIC CALCULUS 

Let h be a complex Hilbert space, and let F(h) denote the boson Fock 
space over h. For each elementf  ~ h let tb(f) denote the coherent (exponential) 
vector (1,f, . . . .  1/(n!) 1/2 | f ,  - �9 .), where |  the symmetric tensor 
product of n copies o f f  The linear span of {t~(f): f E h} is total in F(h). 
We denote it by %. Let h = ht �9 h t be the direct sum decomposition of the 
Hilbert space h (= L:(W+) = L2[0, t] �9 L2[t, o~) here). We identify F(h) = 
F(h,) | F(ht), so that the exponential domain % factorizes as an algebraic 
tensor product ~ = %, Q %'. Let Ft denote the Fock space over h = L2(/), 
where I may denote R, 2L_, R_, [a, b] C RI+. We write F+ for F(L2(R~)) and 
F for F(L2(RI)). 

Given a contraction S on h, the second quantized contraction F(S) is 
defined by the action F(S)+(f) = t~(Sf). 

We denote by Atl the Z2-graded von Neumann subalgebra of a Z2-graded 
algebra At := B(F+) generated by the fermion field operators {b#(f)}, with 
f s h and s u p p f  C I C R~, i.e., At1 := {b#(f): s u p p f  C I}". Here b#(f) 
denotes annihilation b( f )  or the creation field operator b*(f) .  

A Z2-graded *-algebra At is a pair (At, 7) comprising of a *-algebra At 
and a *-automorphism ",/of At, s.t. 72 = id. We write At = At+ �9 At-, where 
At-+ are the fixed point spaces of 7 and - y ,  respectively. One obtains such 
a 7, by conjugation by a self-adjoint unitary (parity) operator R, which acts 
as follows: RX = XR, X ~ At[, and RX = - X R ,  X E At/-, so that XY = 
RXR (Hudson, 1993). We shall use the parity operator R(t)t~(f) = t~(-fx~0,t 1 
+ fx<t,~)) to Z2-grade AtI0,,l (Hudson and Shepperson, t992). It is evident that 
this leaves invariant each of the subalgebras At! = At/- G At)-. 

We denote by ~ the Z2-graded tensor product [studied first by Chevalley 
(1955); Davies (1971) studied a skew tensor product of von Neumann algebras 
in the framework of involutory automorphisms of W*-algebras; in Hudson 
(1993) and Hudson and Struleckaja (1995) the Z2-graded tensor product of 
the *-algebras appeared in the studies of fermionic stochastic flow evolutions]. 
We observe that if I = [s, t] for I C [0, t], 

Ati C lrto,sj ~ {B(FI) + @ B(Ft)-} ~ Ir~,.~ 

consists of Z2-graded ampliation, where B(FI) -+ denotes the even (+)  and 
odd ( - )  bounded operators on the corresponding Fock space FI. 
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Given an initial Hilbert space ho carrying the initial (system) algebra 
./~o = ~[~ @ ~ o  obtained by conjugation by the initial parity o^perator Ro, 
we define the Z2-graded von Neumann algebra Xt := {:l/~0 | Mr: I C_ 
R~+ }". We equip the algebra 5"1 with the product Z2-graded structure (Cheval- 
ley, 1955; Hudson and Struleckaja, 1995). 

The NI, I = [s, t], 0 -< s < t < % form a double filtration of B(ho | 
F+) in the sense that 0g~,,l C ag~,,,, 1 whenever 0 < s' -< s --- t - t' < ~ and 

U :Vl = B(ho | F+) 
ICR+ 

There exists the vacuum-state conditional expectation El onto each Xt. It is 
characterized by the property 

EI[T ~ b#"(f,,) "'" b<(fl)] 

= @(0), b"( fn•  "'" b" ' (k  Xf)•(O))g @ b"(f~Xl) "'" b"'(f~ Xt) 

where T e ~o, b#"(f,) "'" b#~(ft) is a polynomial in the fermion field creation 
and annihilation operators, Vi = 1, n , f  e L2(RI+), and I c denote the comple- 
ment of I in R~+. Here El satisfies the projective property El1 o Ez2 = Eh, if 
I I C 12 C RI+. 

The bounded process X = (X(t): t e R~), which concerns us, defined 
together with its adjoint X* on a common domain in h 0 @ % (algebraic 
tensor product) is adapted in the sense that X(t) = X, @ 1' [X*(t) = X~ (~ 1']. 

An adapted process X is a martingale if it satisfies the identity 

Eo,,[X(t)] = X(s), Vs < t 

The martingale is regular (Parthasarathy and Sinha, 1986) if there is a Radon 
measure tx on 1 C RI+ such that for s < t, u E F0,, @ t~(0)r .... 

[E0.,ll[(X(t) -X(s))]ull  2 + E0.,ll[(x*(t) -X*(s))]ul l  z] <- ~([s, t])llull 2 
Then Parthasarathy and Sinha (1986) it can be represented as a stochastic 
integral against the three fundamental martingales of bosonic quantum sto- 
chastic calculus (see next section). We observe that generalization of this 
property to the case of Z2-graded von Neumann algebras gfl is straightforward 
(Struleckaja, 1994). 

2. QUANTUM S T O C H A S T I C  F E R M I O N I C  C O C Y C L E S  

Let S be the right shift on L2(Rt+), 

~f(x - t), x >-- t 
&( f ) (x )  = [0 ,  otherwise 

The operator S, is a contraction. Moreover, the second quantization F(S,) as 
well as the operator S, itself are isometric. Also F(S,)F(St) = F(Ss+t). The 
F(S,) is an even operator; we identify it with its ampliation to the initial space. 
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We introduce three basic martingales of bosonic quantum stochastic 
calculus and thereafter will pass onto their fermionic counterparts by applying 
the arguments of unification theory (Hudson and Parthasarathy, 1986). These 
are the gauge K l and the boson creation K 2 and annihilation K 3 processes 
defined by their action on u | t~(f), u E h0, ~ ( f )  ~ %, f E Lz(RI+) by 

(KZ(t)" | +( f ) )  d = u | ~ ( f  + ext0,,l) 
6=0 

(0 (g•(t)u | +(f))  = f (s)  ds u | ~,(f) (2.0) 

K I is symmetric and K 2 and K 3 are mutually adjoint on h0 @ %. 
According to Cockroft and Hudson (1978), the usual bosonic creation 

and annihilation field operators can be expressed as stochastic integrals a ( f )  
= f [fl dK• ,  a*(f)  = f f d K  2, in the sense that a(fx[0al) = fro f dK 3 and 
a*(fx[0.tl ) = f ' o f d K  2 for Vt e Rl+,f ~ L2(RI+). 

We introduce fermionic creation and annihilation processes (Hudson 
and Parthasarathy, 1986) 

f0 fo KZ (t) = R dK~, K3 (t) = R d K  3 (2.0)' 

where R = ( - I )  x~ is the parity process, so that dK~ = R dK 2, dK3g = R 
dK~. Since R e = 1, dK~ = R dK2F, dK 3 = R dK3F, and the fermion field 
operators b( f ) ,  b t ( f )  are 

The operators b#(f) are bounded and satisfy the CAR [b(f),  big)]+ = [bt(f), 
bt(g)]+ = 0, [b(f) ,  b*(g)]+ = {f, g ) l , f ,  g e s and, as the vacuum is 
annihilated by the b ( f )  and is cyclic for the b*(f) ,  provide the Fock representa- 
tion of the CAR. 

From now on we shall omit the index F of K}, i = 2, 3, and consider 
dK i, i = 2, 3, of (2.0)' and K 1 of (2.0) as basic martingales of fermionic 
quantum stochastic calculus. The It6 multiplication rules of the basic differen- 
tials d K  i, i = 1, 3, and the time differential dr, denoted here by d K  ~ (Hudson 
and Parthasarathy, 1986; Parthasarathy, 1992), provides the identities 

dKldK l = dK J, dK ldK  2 = dK 2, dK3dK j = dK 3, dK3dK 2 = dK 4 

and all the others are equal to zero. 
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Given the adapted process E/, i = 1, 4, the stochastic integral M(t) = 
fb Ei dK i (repeated suffix summation convention) is adapted, and so is its 
adjoint M*(t) = f'o E*~ dK i. The It6 type stochastic integrals are constructed 
and studied in Hudson and Parthasarathy (1984) and Parthasarathy (1992). 

We identify the processes K i, i = 2, 3, with their Z2-graded ampliations 
to the domain h0 ~ %, so that each lh0 ~ K i, i = 2, 3, acts on u | t~(f) by 
the rule 1 ~ Ki(t)(u | +( f ) )  = Rou ~ Ki~( f ) .  

Let the process U(t) be a solution of the fermionic q.s.d.e. 

dU = UlidK i, U0 = 1 (2.1) 

where the coefficients l~, i = 1, 4, are a bounded operator in ho identified 
with their Zz-graded ampliations to h0 | F+, satisfying the certain unitarity 
condition [originally see Hudson and Parthasarathy (1984); in the fermion 
case, Hudson (1993) and revised in Hudson and Struleckaja (1995)]. 

Let Us,t = U~- l Ut, 0 < s -< t < ~, be a two-parameter family of operators 
o n h 0 |  = h 0 | 1 7 4  t . T h e n , f o r 0 <  r<-  s -  t <  ~ , w e h a v e  

Ur.sUs.t = Ur.t (2.2) 

We regard (2.2) as describing a two-parameter evolution. The family {Us,t: 
0 < s <-- t < ~ } is called the stochastic evolution associated with the unitary 
process t ~ Ut on h 0 | F+, that is the solution of the q.s.d.e. (2.1). 

Definition [Compare with Hudson and Lindsay (1987)]. A fermionic 
cocycle on h0 | F+ is a family {Us,t: 0 < s -< t < ~} of even unitary 
operators satisfying the following conditions for all 0 < r -< s -< t < ~: 

(i) Ur~U,t = Urt 
(ii) U/t is'an even element of von Neumann algebra JV~,, 

(iii) F(S0*U~,F(Ss) = U0,-~ (2.3) 
(iv) t ~ E0 ,['U~,] is norrn continuous 

(We say that Us,, is even if it belongs to a subalgebra At{.) We observe that 
only uniform continuous semigroups are of interest to us. The following holds. 

Theorem 1. If U is a solution of the q.s.d.e. (2.1), with li E JV o, i = 
1, 4, constant, and 

l I : W - -  I, [2 : l ,  13 : - - l * w  "r l 4 = ih - � 8 9  (2.4) 

for unitary w* = w -1, h self-adjoint, 1 arbitrary in B(h0), and ",/being a parity 
automorphism, then {U~,t : U(s)*U(t); 0 <- s <- t} is a fermionic cocycle. 

Sketch o f  the Proof  The uniqueness of the solution of the q.s.d.e. (2.1), 
which is unitary valued, but with an arbitrary initial value, and its coefficients 
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satisfy the conditions (2.4) and fermion unitarity conditions (Hudson and 
Struleckaja, i995), is obtained by the straightforward generalization to the 
Z2-graded case of Theorem 7.1 by Hudson and Parthasarathy (1984) (in the 
boson case) and proven with the initial value 1 in the fermion case in Theorem 
6.2 by Applebaum (1987). From this it follows that (2.3i) is fulfilled. 

Denote U~(x) = u~lu~+x for U,,,+x, while fixing s ~ W+. Now, U,(x) 
satisfies the integral equation 

j0 Us(x) = ! + U,('r)Ii dK~(T) (2.5) 

where KS(- ) := Ki(s + �9 ) - Ki(s), i = 1, 3, are new basic martingales. Then 
the Picard iteration procedure can be applied (Hudson and Parthasarathy, 

+ 
1984), and the (strong) limit belongs to an algebra X,v+~ as long as each of 
the iterates belongs to this algebra. This gives (Z3ii). 

By arguments similar to ones in Hudson and Lindsay (1987), we show 
that (2.3iii) holds. Indeed, we observe that F(S,)*N,,tF(S,) = N0,t-s. Let V(,r) 
denote an adapted process 'r ---) F(Ss)*U(s)U(s + '0F(S,). Then applying 
the first fundamental formula of quantum stochastic calculus (Hudson and 
Parthasa~athy, 1984; Par~b~asarathy, 1992) we have for f,  g E L2(R~+), u, v ~ h0, 

u | F(S,)* U(s)*U(x)li dKi(x) F(S,)v @ q,(f), 

I 
s + t  

= [(.  | ,((SJ)(x)), U(s)*U(x) 
y 

• ((S,f)(x))((Ssg)(x))l~ v | ~(S,g)(x))}  

+ (u" | ~((s.(-fxto.,.l))(x)), U(s)*U(x) 

x (s,(-fx~o,,j)(x))~v | ,((S.g)(x))) 

+ (. | q,((sdO(x)), U(s)*U(x)((S. (-gx~o,,1))(x)) 

X 13Ro v | t~((Ss(-gX[o,xl))(x))) 

+ (u | ~ ( (S f ) ( x ) ) ,  U(s)*U(x)14v | ,b((S,g)(x)))] dx 

= u | ~ ( f ) ,  F(SO*U(s)*U(s + "r)F(Sr dKi('r) v | +(g) 

Notice that the second quantization F(S,) commutes with the parity 
operator F ( - I )  over the whole Fock space, and so is even. Thus, V also 
satisfies (2.5). By the uniqueness arguments, V = U. Finally, we observe 
that [tP(O - P(s)[t <-- [[lall(t - s), 0 <- s <-- t < ~.  �9 
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Thus, this proves  that the correspondence between the cocycles  and 
unitary evolution in our case is closely parallel to the bosonic case (Hudson 
and Lindsay, 1987). 

3. B A C K  TO UNITARY E V O L U T I O N S  

We complete  this paper  by stating the converse  problem.  

Theorem 2. Let U~,, be a f e rmion ic  cocycle.  Then there exist li ~ No, 
with I1, 14 even 12, 13 odd, as in (2.4) and satisfying certain unitarity conditions, 
such that U(t) --- U0.t is the solution of  the fermionic q.s.d.e. 

dU = U l i d K  i, Uo = 1, i =  1 , 4  

The proof  will appear  in Struleckaja (1994). 

Remark.  Once again, we would like to emphas ize  that the 'unification'  
technique and the use of  the ' exponent ia l -vectors-span '  formulation of  the 
theory used in this paper, rather than the 'mul t ipar t ic le-vector '  formulat ion 
(Applebaum,  1987), enabled us to proceed with the generalization in a rather 
natural way. 
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